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Abstract

Polarization of muons in the cooling channel is investigated in the
spirit of an earlier similar study for the decay channel. Algorithms to
transport polarized muons through absorbers are presented. Care is
taken to preserve correlations between polarization and phase space
variables. Some examples are included by way of illustration.

1 Introduction

Transport of polarized muons through the cooling channel leading to a muon
collider or storage ring is investigated with the Monte Carlo code simucool
which is upgraded to include effects of polarization. In [1] changes in po-
larization in the decay channel are studied. The Monte Carlo procedure
attaches a spin vector to each muon acquired when the pion parent decays,
then follows the evolution of this spin vector as the muon traverses the de-
cay channel. Transport of spin through absorbers is added in the present
study but all simplifying assumptions used in [1] are retained in traversing
the solenoids and cavities which link the absorbers in the cooling channel:
g=2, with idealized fields which are constant and point along the z-axis.
Transport of spin through arbitrary fields is deferred to a later installment.

The procedure of simulating large angle scatterings as individual events
while combining all those below some suitably chosen threshold into a mul-
tiple scattering distribution as advocated in [2] is well suited to inclusion
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of polarization because ‘. . . polarization effects are proportionately more af-
fected by the few scatterings at large angles than is the angular distribution
itself . . . ’ [3]. In an absorber, therefore, correlations are expected to develop
between transverse phase space variables and polarization mostly as a result
of relatively few large angle scatterings and by simulating these individually
such correlations are included explicitly.

In [4] a procedure is presented for keeping track of energy loss and angu-
lar dispersion of charged particles—along with their correlation—in a thick
target. This procedure entails fixing a threshold below which the muon’s an-
gular deflections are chosen from an Edgeworth series (which improves upon
the usual Gaussian approximation) while above it full two-body µ-nucleus-
collisions are simulated. Angular deflections associated with µe− collisions
are rather small compared with those incurred in µ−nuclear scattering and
are estimated based on a Gaussian approximation. This procedure, along
with a similar treatment of energy loss fluctuations has now been imple-
mented into simucool and can be utilized for tracking particles through
thick targets. To include polarization in the above scheme for tracking
muons through a cooling channel, one needs algorithms to simulate change
in helicity due to single encounters (above threshold) as well as to treat
the change due to a large number of encounters (below threshold), while
transport of spin through magnets and cavities may be taken from [1].

Below, in Sec. 2, the physical basis and Monte Carlo implementation of
these algorithms are briefly described and in Sec. 3 this is applied to some
examples. Concluding remarks are in Sec. 4.

2 Polarization

In general, simucool tracks the muons step-wise through the geometry.
This is always done when traversing an absorber but elsewhere—where
possible—advantage is taken of analytical short-cuts. Thus, when a solenoid
is assumed to have an ideal field with ~B = Bz ẑ, the muon orbit is easily
described and given its coordinates and momenta at the entrance of the
magnet, those at the exit are readily determined along with aperture check-
ing during transit. To avoid dealing with end fields the entire channel is
assumed to be enveloped by a solenoid. While this may be impractical as
well as cause the beam to acquire an undesired net angular momentum, it is
nonetheless a good first approximation to study depolarization in a cooling
channel. Cavities are assumed to have zero extent and to deliver a finite
energy kick to the muon. For an electric field with ~E = Ez ẑ (varying sinu-
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soidally in time) this kick corresponds to a change in momentum along pz
only, with px and py left unchanged. The algorithms for changes in polar-
ization resulting from traversing solenoids, cavities and absorbers are now
examined.

2.1 Solenoids and Cavities

Using the above analytical shortcuts it is found in [1] that for transport
through solenoids and cavities it is easiest to keep track of the muon spin
four-vector, s, in the lab frame. But expressions for changes in polarization
in an absorber, due to Coulomb scattering, are generally stated in terms of
the spin vector, ζ̂, in the muon rest frame—where |ζ̂| = 1 and the fourth
component vanishes. A simple way out is to use each approach in its own
domain and convert the three-vector part of s to ζ̂ via the Lorentz boost:

ζ̂ = ~s− ~p ~p · ~s
ε(ε+m)

(1)

where ~p and ε are the muon momentum and total energy in the lab.

2.2 Absorbers

Polarization change in an absorber starts with polarization change in a single
scattering. As in [4] a projected angle threshold, θc, is introduced, above
which events are to be simulated individually. To be precise: for an event
to qualify for this treatment, it is sufficient that either projected angle, θx
or θy , is larger than θc. Conversely, only when both θx and θy are below θc
is the event included collectively in the multiple scattering. The algorithms
for calculating polarization changes in single and for multiple scattering are
discussed below.

2.2.1 Single Scattering

The polarization change in single muon-nuclear scattering is written as [5]

P ′ = P

[
1− 2 sin2(θ/2)

γ2 cos2(θ/2) + sin2(θ/2)

]
. (2)

This formula can be used directly in the Monte Carlo for single scattering.
For initial and final momenta and spin vectors represented by (~pi, ζ̂i) and
(~pf , ζ̂f), respectively, ζf,f = P ′, the component of ζ̂f along ~pf , after a single
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scattering through angle θ, is readily obtained by evaluating Eq. 2. To ob-
tain the remaining two ζ̂f components a coordinate system (n̂, b̂, p̂f) is used

where n̂ = p̂i × p̂f and b̂ completes a right handed system. The spin com-
ponent along n̂, perpendicular to the scattering plane, remains unchanged
during scattering: ζf,n = ζi,n. The magnitude of ζf,b is determined from
normalization of p̂f , while its sign will generally be that of ζi,b. To be more
precise, from Ref. [6] and the small angle approximation

ζf,b = ζi,b

(
1 +

p2θ2

2ε2

)
−
(

1− m

ε

)
θP (3)

and this should be accurate enough to determine the sign of ζf,b.
The above algorithm is applied to scattering off nuclei above the thresh-

old angle. Muon-electron encounters in which the electron is liberated from
the atom result in much smaller angles [7] and the accompanying depolar-
ization is incorporated in the multiple scattering.

2.2.2 Multiple Scattering

For multiple scattering the change in polarization is a product of a large
number of factors as appear within the square brackets of Eq. 2. To second
order in θ this product becomes

P ′ = P
(
1−

∑
θ2
j /2γ

2
)
. (4)

Third order terms have zero expectation and higher orders are neglected
because of the smaller angles involved. The scattering algorithm deals with
projected angles:

∑
θ2
j,x+θ2

j,y =
∑
θ2
j . The average of

∑
θ2
j,x may be written

as n〈θ2
x〉, where the j-subscript is omitted in dealing with an individual

event, and n is the number of scatterings.
For the individual scattering law assumed in [4]

W (θx) =
θ2

0(θ2
c + θ2

0)1/2

2θc(θ2
x + θ2

0)3/2
, (5)

where θ0 is a constant associated with screening of the nuclear charge by
atomic electrons, one obtains

〈θ2
x〉 =

θ2
0(θ2

c + θ2
0)1/2

2θc
log

(
(θ2
c + θ2

0)1/2 + θc
(θ2
c + θ2

0)1/2 − θc

)
− θ2

0 (6)
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where θc is the threshold projected angle. The distribution of
∑
θ2
j,x about

n〈θ2
x〉 is assumed to be Gaussian with variance equal to n(〈θ4

x〉−〈θ2
x〉2) where

〈θ4
x〉 may be found from Eq. 5 as well [8]:

〈θ4
x〉 =

θ2
0(θ2

c + 3θ2
0)

2
− 3θ4

0(θ2
c + θ2

0)1/2

4θc
log

(
(θ2
c + θ2

0)1/2 + θc
(θ2
c + θ2

0)1/2 − θc

)
. (7)

The above equations do not take into account fluctuations in the number of
encounters in a Monte Carlo step, n, about its average, n̄. For thin targets
this fluctuation may become significant and it is therefore routinely included
here by choosing n from a Gaussian with parameters (n̄,

√
n̄).

For samples chosen from a normal distribution, the sample mean and
variance are independent [9]. The sample under consideration here is the
number of events in a Monte Carlo step and the variable is the projected
angle θx for which the sample mean is 〈θx〉 = Θx/n =

∑
θj,x/n, with sam-

ple variance σ2
θ,x =

∑
θ2
j,x − Θ2

x/n. For a sufficiently large sample, one
might expect approximate independence even if the variance is calculated
with respect to the population mean, θ(= 0), since the sample mean con-
verges to this value. While the underlying population, viz., Eq. 5, is far
from normal one might expect mean and variance to become approximately
independent when the distribution of Θx, the x-projected scattering angle
randomly chosen in a step, approaches the normal. This is the basis of the
Gaussian approximation to multiple scattering—although corrections to it
are deemed necessary: Edgeworth series and large angle cut-off. With iden-
tical reasoning for θy it follows that scattering angle and polarization are
independent when limited to sufficiently small angles, i.e., limited cut-off
angle, and when Monte Carlo step size is large enough. Thus the strategy of
treating a few large angle scatterings individually and the rest collectively
should work for polarization as well.

It is interesting to put all this to a test and display an example of the
correlation between depolarization—proportional to

∑
θ2
j,x+θ2

j,y—and scat-
tering angle (squared) Θ2 = (

∑
θj,x)2 + (

∑
θj,y)

2 as might be observed in
a typical Monte Carlo step. Fig. 1 shows three scatterplots relating the
above variables at the end of a 0.5 cm thick liquid hydrogen target upon
which muons of 0.1 GeV/c are incident. The 0.5 cm target thickness might
correspond to a typical step in the simulation. Each point in each of the
three graphs represent a series of scattering events below a chosen threshold
angle—indicated by N , the number of collisions left to be treated individu-
ally in that step, with N = 0 indicating the absence of a threshold. There
are no shortcuts and no collective treatments in Fig. 1: muons are tracked
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through the target using the scattering law Eq. 5 (with appropriate cut-
off) to simulate each collision individually, i.e., it shows what a collective
treatment should strive to match. It is shown in [10] that—independent
of target thickness, material, or particle energy—N is a good parameter to
separate collective from individual behavior when studying energy loss. It
can serve equally well in the treatment of multiple scattering [4]. Superim-
posed on the plots is a linear least square fit of the average of

∑
θ2
j,x + θ2

j,y

versus (
∑
θj,x)2 + (

∑
θj,y)

2. The N = 0 plot (top) shows relatively strong
correlations and a highly non-Gaussian distribution for

∑
θ2
j,x + θ2

j,y at any
value of (

∑
θj,x)2 + (

∑
θj,y)2. The lower two plots show both these un-

wanted behaviors to decline rapidly with increasing N—even though they
do not disappear completely. As the middle graph of Fig. 1 shows, N = 1 or
perhaps a bit higher, offers a good choice of cut-off angle insofar as correla-
tions are almost absent: about 10% over the extent of the graph, but much
less where there is a significant muon population. Incidentally, whereas the
Moliere distribution does a good job of representing thick target angular
distributions, e.g., the marginal distribution with respect to the abcissa of
the N = 0 case in Fig. 1, it has nothing to say about correlations.

Figs. 2–4 contrast correlations, again between
∑
θ2
j,x+θ2

j,y and (
∑
θj,x)2+

(
∑
θj,y)

2, obtained with the Gaussian approximation as opposed to event-by-
event simulation for three beryllium targets of thickness 0.01, 0.1 and 1 cm,
respectively. The cut-off angle, θc, is chosen to correspond to a value ofN=2,
i.e., two events remain to be simulated individually in Monte Carlo steps of
either 0.01, 0.1, or 1 cm. In each figure the top part is obtained by simulating
all events below θc individually while in the bottom part

∑
θ2
j,x+θ2

j,y is chosen
from a Gaussian distribution independent of the scattering angle (abcissa).
The comparisons shows that for N=2 the Gaussian approximation with
parameters as per Eqs. 6 and 7 (without correlation) appears indeed quite
adequate when studying polarization associated with small angle multiple
scattering.

Based on these considerations, the algorithm adopted for multiple scat-
tering in a Monte Carlo step, which includes changes in polarization, is:

(i) Choose a number of collisions, n, from a Gaussian with parameters
(n̄,
√
n̄).

(ii) Select an angle Θx =
∑
θj,x from the Edgeworth series as outlined in [4].

(iii) Choose
∑
θ2
j,x from a Gaussian (n〈θ2

x〉,
√
n(〈θ4

x〉 − 〈θ2
x〉2)).

(iv) Repeat steps (ii) and (iii) for the y-projected angles.
(v) Determine the new momentum from the scattering angle Θ = (Θ2

x +
Θ2
y)

1/2 and random azimuthal angle.
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Figure 1: Correlation between
∑
θ2
j,x+θ2

j,y (polarization) and (
∑
θj,x)2+(

∑
θj,y)2

(scattering angle) for liquid hydrogen target of 0.5 cm thickness, as obtained by
complete simulation of individual events, for three angular cut-offs expressed as the
number of events, N , which remain to be simulated individually.

(vi) Determine the new polarization: P ′ = P [1− (
∑
θ2
x +

∑
θ2
y)/2γ

2] which

yields the component of ζ̂ along ~pf .

(vii) Assign random orientation to the component of ζ̂ in the plane perpen-
dicular to ~pf .

Step (vii) assumes that the full range of azimuthal angles is explored
over the many encounters treated collectively in each Monte Carlo step.
The angles associated with µe−-processes are incorporated in the algorithm
as outlined in [4]. Their contribution to depolarization is included in step (iii)
by replacing Z2 by Z(Z+1) to evaluate the number of encounters in step (i).
The effect of µe−-encounters with electron recoil on the polarization is ex-
pected to be small and is not separately evaluated.
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Figure 2: Correlation between
∑
θ2
j,x+θ2

j,y and (
∑
θj,x)2 +(

∑
θj,y)2 for beryllium

target of 0.01 g/cm2 thickness, as obtained by complete simulation of individual
events (top) and with algorithm (bottom).

3 Results

First some results are presented for absorbers only and compared with an-
alytic formulae followed by results for a cooling channel example.

3.1 Absorbers Only

Results obtained with simucool for typical cooling channel absorbers are
presented. Average depolarization can also be calculated approximately
by analytical methods and is included here mainly to provide a check on
simucool.

3.1.1 SIMUCOOL

On the basis of the single scattering depolarization formulae one expects
some correlation to exist between helicity and p⊥ after transport through an
absorber. In simucool, such correlations arise strictly from the scatterings
which are simulated individually since they are ignored in the collective
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Figure 3: Same as Fig. 2 but for target of 0.10 g/cm2 thickness.

regime—quite properly as argued above and demonstrated in Figs. 2–4.
(For very thick targets, when 〈θ2〉1/2 ≥ θmax and the collective regime reigns
throughout, one could expect the correlations to disappear altogether, but
these thicknesses are too large to be of practical use in the present problem.)

Fig. 5 presents a suite of scatterplots displaying p⊥ versus helicity at
various depths when a muon beam with pz,0=0.2 GeV/c, p⊥,0=0 and with
initial helicity h0 = 1, penetrates a 2 m long liquid hydrogen target. Cor-
relations between h and p⊥ are clearly present although, with increasing
depth, the more strongly correlated points tend to fall outside the domain
of Fig. 5. Fig. 6 plots energy—measured from the average energy—vs he-
licity for the same beam, target thicknesses, and depolarization formula.
Since energy loss is predominantly the result of muon-electron encounters
while depolarization arises mainly from muon-nuclear scattering there is, as
expected, little correlation between the two. Second order effects such as,
e.g., longer pathlengths, which cause both energy loss and depolarization to
increase, might result in the correlation observed between the upper limit
of h − h0 and energy. In Fig. 7 a set of p⊥ versus helicity plots—similar to
Fig. 5—is presented for 0.2 GeV/c muons traversing a 20 cm thick beryllium
target. Fig. 8 shows the same results as fig. 7 but over a much larger helicity
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Figure 4: Same as Fig. 2 but for target of 1.00 g/cm2 thickness.

range. It is based on 5 · 105 incident muons to increase statistics of events
with high depolarization.

3.1.2 Average Depolarization

Average depolarization as a function of depth can be estimated analytically
starting from the depolarization formulae for single scattering. [7] These
provide an important check on simucool calculations. The treatment here
differs from [7] mainly in that the muon energy loss—which occurs simulta-
neously with depolarization and at a much faster rate—is included, as well
as in a few lesser details. For an infinitesimal target, of thickness dz, the
(average) depolarization can be written as

dP = n̄〈δP 〉 dz (8)

where 〈δP 〉 is the average depolarization in a single collision and n̄ is the
average number of collision per unit length. For the individual scattering
law, expressed as a function of polar angle, θ,

W (θ) =
2θ2

0θ

(θ2
0 + θ2)2

(9)
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Figure 5: Correlation between depolarization and p⊥ for muon beam with
pz,0=0.2 GeV/c, p⊥,0=0 and h0=1 at various depths (cm) in liquid hydrogen tar-
get. Solid vertical line is average depolarization as predicted by simucool, dashed
vertical as per Eq. 12.
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Figure 6: Correlation between depolarization and energy for muon beam with
pz,0=0.2 GeV/c, p⊥,0=0 and h0=1 at various depths (cm) in liquid hydrogen tar-
get. Solid vertical line is average depolarization as predicted by simucool, dashed
vertical as per Eq. 12.
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Figure 7: Correlation between depolarization and p⊥ for muon beam with
pz,0=0.2 GeV/c, p⊥,0=0 and h0=1 at various depths (cm) in beryllium target. Solid
vertical line is average depolarization as predicted by simucool, dashed vertical as
per Eq. 12.
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Figure 8: Correlation between depolarization and p⊥ for muon beam with
pz,0=0.2 GeV/c, p⊥,0=0 and h0=1 at various depths (cm) in beryllium target. Plot
represents same results as Fig. 7 but with axes rescaled, larger sample of incident
muons and with region h− h0 > −0.005 excluded.
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and depolarization as per eq. 2 in the small angle approximation

〈δP 〉 = P

∫ θmax

0
W (θ)

1

2γ2
θ2dθ

= P
θ2

0

γ2

[
log

θmax
θ0
− 1

2

]
(10)

while n̄ = 4πNAve
4 [Z(Z + 1)ρ/A]

(
ε2/p4θ2

0

)
. In Eq. 10, θmax is associated

with nuclear size [11] and has the value 274me/A
1/3p. To include the (aver-

age) energy loss, the simplified law

(
dE

dx

)
=

(
dE

dx

)

0

1

β2
(11)

is assumed where
(
dE
dx

)
0

is the minimum ionizing stopping power. This

should hold fairly well in the energy regime of interest to muon cooling.
Eq. 8 must now be integrated over finite thickness, ∆z, and this is facilitated
by switching to average total energy, ε, as the independent variable:

∆P = 4PπNAve
4
[
Z(Z + 1)ρ

A

][
log

θmax
θ0
− 1

2

]∣∣∣∣
dE

dx

∣∣∣∣
−1

0

∫ ε0

ε1

m2

ε2p2
dε

= 4PπNAve
4
[
Z(Z + 1)ρ

A

][
log

θmax
θ0
− 1

2

]∣∣∣∣
dE

dx

∣∣∣∣
−1

0

×
[

1

ε0
− 1

ε1
− 1

m
log

(m+ ε0)p1

(m+ ε1)p0

]
. (12)

where ε0 and ε1 are the average total energy, at the start and end of the
absorber, respectively. To evaluate ε1 one relies on the more accurate dE/dx
formula, see e.g. Ref. [12], rather than Eq. 11.

Predictions of these analytical formulae along with the average depolar-
ization obtained from the simucool simulation are shown in Figs. 5 and 7
as vertical lines: solid for simucool, dashed for the analytical formulae.
The position of the average vs that of the bulk of the population clearly
shows the influence exerted on the average by relatively few large depolar-
izing scatterings. More precise comparisons of the average results of Fig. 7
are presented in Table 1.

There are a number of differences between the analytical treatment and
simucool, perhaps the most important one being the sharp cutoff at θmax
in Eq. 12 versus the use of form factors in the simulation. Given these
differences, and the strong influence of the tails on the average, disagreement
at the 10–15% level, as observed for the beryllium target, is not surprising.
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Table 1: Comparison of simucool with analytic calculation of average depolariza-
tion versus depth in cm for muons with pz=0.2 GeV/c, p⊥=0 and h0 = 1 traversing
a beryllium target.

Z,cm simucool Eq.12 Z,cm simucool Eq.12

2.5 0.000092 0.000107 12.5 0.000787 0.000884

5.0 0.000207 0.000238 15.0 0.001129 0.001238

7.5 0.000351 0.000402 17.5 0.001626 0.001795

10.0 0.000538 0.000611 20.0 0.002407 0.002638

To determine accurately the average depolarization in simucool requires a
rather large sample of muon traversals to be simulated so as to explore the
large angle regime adequately. Table 1 and the simucool average indicated
in Fig. 7 are based on 2.5·106 muons, while the average of Fig. 5 is based on
105 muons. For clarity, only limited numbers are shown in the scatterplots.

3.2 Cooling Channel

In simulating the cooling channel it is advantageous to track the entire set
of muons under consideration from cavity to cavity [13]. This allows the
phase of each cavity to be optimized based on energy and arrival time of
each muon of the sample being studied. A simple optimization strategy is
adopted: when a muon arrives at a cavity it is determined what the phase
of the cavity should be in order to restore—as best as possible—the muon’s
energy to the central energy in a single traversal. After all muons have
arrived at the cavity the phase adopted is the average over the restoring
phases calculated in this manner. Using the rf phase thus optimized, the
entire set is then transported through the cavity, the following solenoid and
absorber, and then on to the next cavity where the process is repeated. More
sophisticated strategies may improve yield and could also aim at limiting
depolarization.

Table 2 presents results for average helicity changes when a muon beam
travels down a cooling channel approximately 145 m long. A monochro-
matic muon beam starts out with initial longitudinal momentum, pz,0, of
either 0.15, 0.25 or 0.4 GeV/c and with initial transverse momentum, p⊥,0,
of either 0 or 0.125 GeV/c. The channel is equipped with 50 absorbers of
liquid hydrogen each 40 cm long. There are an equal number of 200 MHz rf
cavities which restore the average energy loss incurred in the absorbers. A
5 Tesla solenoidal field is assumed to apply over the entire length of the chan-
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Table 2: Number of muons per proton and average helicity at end of cooling channel
as a function of initial h0, p⊥,0, and pz,0.

pz,0 p⊥,0 µ/p Lost 〈h〉
GeV/c h0=0 0.50 1.00

0.15 0.000 0.088 0.805 -0.0001 0.4953 0.9908

0.25 0.000 0.894 0.015 0.0001 0.4995 0.9990

0.25 0.125 0.671 0.240 -0.0003 0.4990 0.9984

0.40 0.000 0.894 0.019 0.0000 0.4999 0.9999

nel. In between absorbers and cavities are 1.25 m long gaps where only the
magnetic field is present. Absorbers and cavities occupy the full aperture.
Muons are no longer followed if they exceed the aperture radius of 20 cm.
The above parameters, while not specific to any design, are representative of
those used in a number of cooling channel studies and polarization changes
are not expected to be very sensitive to the particular values adopted. Ini-
tial helicity, h0, as listed in Table 2, is the same for each beam particle.
The choice of a fixed helicity—rather than a broad, momentum-correlated
spectrum emanating from the decay channel—is intended to sharpen the
depolarization results.

Results of Table 2 are based on samples of 10000 muons for pz,0=0.25 and
0.40 GeV/c but is increased to 40000 for pz,0=0.15 GeV/c to compensate
for the large losses which compromise statistical accuracy of the surviving
sample. Results pertain to all muons reaching the end of the channel but
do not change much when broad cuts are made in the time-energy plane.
As expected from the basic depolarization formulae, starting with opposite
sign helicity, −h0, results in a final polarization of −〈h〉. For initial con-
ditions as in Table 2, column 3 shows muons per proton at the end of the
channel, while column 4 lists the fraction of muons lost by exceeding the
aperture with the missing muons lost by decay. Results show depolariza-
tion over the entire channel to be very small and that larger depolarization
occurs at lower pz,0—not surprisingly in view of the larger scattering angles
expected there. Where aperture losses are significant, increasing the aper-
ture will lower 〈h〉 since p⊥–h correlations cause muons with higher h to be
lost preferentially. Selective removal of the high p⊥ particles is the main
reason why the depolarization exhibited in Table 2 remains small even at
the lower energies. Note that according to Eq. 2 the absolute value of the
helicity always decreases in an absorber whereas in a cavity |h| may go up
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as well as down. From the basic formulae one expects the change in helicity
in both absorbers and cavities to be proportional to the (initial) helicity
which explains the approximate constancy of 〈h〉/h0 observed across each
row in Table 2. Comparison between the two pz = 0.25 GeV/c cases shows
some dependence on p⊥,0 most likely resulting from second order effects
of increased pathlength in the absorber, differences in average cavity field
encountered due to different transit times, etc.

To examine the effects on polarization of the absorbers versus that of the
cavities, polarization changes in the latter are ‘turned off’, i.e., upon exiting
a cavity with a new momentum, the helicity is restored to its entrance
value while the other spin components are renormalized. For p⊥=0, final
helicities are practically identical with those of Table 2 whereas at larger
p⊥,0 the difference with Table 2 increases with h0. Thus, in Table 2 only
the third row is affected (pz,0=0.25 GeV/c, p⊥,0=0.125 GeV/c). The largest
change occurs for h0=1 where the final 〈h〉 is now 0.9935. This shows that
most of the depolarization is due to the absorbers and that the fields in the
cavities counteract this depolarization—a direct result of the phase stability
provided by the cavities.

4 Concluding Remarks

Division into single and multiple scattering, which already provides a con-
venient and accurate way to simulate angular dispersion, also works well in
the study of polarization. It becomes essential if one wishes to investigate
correlations between angles (p⊥) and polarization incurred while traversing
a thick target. This relates to the point made by Scott and quoted in the
Introduction. Assume a single large scattering event occurs somewhere in a
Monte Carlo step with an angle well in excess of the rms angle for multiple
scattering. Typically, the cumulative angle of that step will then be close
to the angle of that one event but cumulative depolarization will be close to
proportional to the square of that angle. A collective (Gaussian) treatment
of multiple scattering typically fails at around 2σ [11] and, as the Scott argu-
ment suggests, collective treatment of the polarization fails at even smaller
deviations from the mean.

As the examples shown in Table 2 suggest, overall depolarization in a
typical cooling channel is very small—at most of order one percent. In many
applications it appears that it can either be neglected or that it may suffice
to calculate average depolarization. A more definitive conclusion best awaits
simulations which include more realistic fields in magnets and cavities.
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